导数概念的形式化
一、总论
数值多元函数微分及其相关概念,如中值定理、泰勒展开是数值一元函数的一般化。更进一步说,最一般化的东西是向量值函数。我写这一节的目的是为了与书中特殊到一般的过程形成对比,构建一个由一般到特殊的更加形式统一的体系。但是刚下笔就遇到困难,因为数值单变量函数不仅是最最特殊的情况,它还是最最基本的情况,任何对更加一般的情况的讨论,都离不开对数值单变量导数的运算。所以很难顺序的展开所有概念,介绍时必须选用一定的知识作为推导的基础,这也使得这个体系不再完美。
我觉得进到多元范畴,有两点是重要的,一个是形式的统一,另一个是条件的强弱。形式的统一有两个方面,一个是把新的概念用旧的概念解释,一个是将旧的概念,狭义的概念用新的概念,普世的概念重新理解,这一部分我做的还可以。条件的强弱做的不够好,在讨论单元函数条件的时候,就没有可以与新学的知识互相启发的可能。条件的强弱是应该有感情的,我在新学的知识的条件方面做的还可以,可以弥补部分基础知识,但是对于高深的知识,比如泰勒,积分在级数方面的应用,就十分不敏感。
首先应当明确,距离并不是每一个空间的必要特征,但是是进行数学分析的必要特征。定义距离需要内积的概念,内积衍生出了距离和角度两个概念。所以其实距离并不是基本概念,但是显然距离才比较与数学分析体系兼容,角度只在正交的时候才比较明显。距离在一元函数中表现为绝对值,要注意这种概念的迁移性。
函数列指的是 ${S_n(x)}$ 这样的序列,等价于数列,而函数项级数指的是将函数列${u_n(x)}$进行累加得到的 $\sum u_n(x)$ ,等价于数项级数。虽然我们一般都有等式 $S_n(x)=\sum^n u_k(x)$,讨论收敛性,或者是收敛后的分析性质时,描述的东西本质上是一样的,但是在处理方法上大有区别。比如说对于函数列的一致收敛,我们一般用 $\beta$ 上界判别法,或者用柯西收敛原理。对于函数项级数的一致收敛,我们一般用Dirichlet判别法或者Abel判别法或者柯西收敛原理进行判定,如果判定不了,还可以对函数项级数进行求和转化成函数列(这点尤为重要)。所以区分函数列和函数项级数是很有必要的。
应该意识到最重要的事情:逐点收敛是数的收敛,一致收敛是函数的收敛。但是即使这么说也要强调,收敛、绝对收敛、条件收敛描述的都是数项级数,也就是说描述的是逐点收敛,而不是一致收敛。再详细的说,收敛就是逐点收敛,千万不能产生概念辨析上的困难。要想学好这一章,最重要的就是区分这些概念的辖域。