0%

一、对比

  1. 命题逻辑是研究不同简单命题间关系的,但谓词逻辑是研究简单命题内部结构的,是更加深入的考察。

  2. 命题逻辑形成的公式只需要赋值就可以确定真值,但是谓词逻辑就不行。这是因为谓词逻辑将简单命题拆为量词、主词、谓词。量词和主词要求指明论域,谓词要求指明具体含义。这些都使原来 p=1 的简单事情变成了 $\forall xP(x,f(a))=1$ 的复杂事情。我必须规定论域、谓词含义、常元值(命题逻辑中只有1和0,还被零元联结词的概念掩盖了,但是这里的a可以取一大堆值。本质是命题逻辑中的常元代表一个命题,而谓词逻辑里的a代表一个个体)、函数符号含义(在命题逻辑中不会出现普通函数,因为普通函数属于命题内部,命题逻辑不研究)。这就是解释存在的意义。

  3. 赋值也有不同,在命题逻辑中赋值,是将命题变元赋成0或1。在谓词逻辑中,是将自由变元赋成论域中的某个个体,说不定是苹果还是西瓜呢。

二、直观理解

  1. 谓词可以有两种理解,对于一元谓词,可以理解为他描述了主体的一种性质。对于多元谓词,可以理解为不同主词间关系的描述。进一步来讲,对于关系来讲,大多关系都是可以用一个相等关系或者不等关系表达的。这些类方程可以简化思考,还便于找反例。一整个公式就像一个方程组一样。

  2. 永真式等值演算紧密联系,两者可以说是逻辑中最重要的部分。即恒等变形

  3. 逻辑中概念很多,对晦涩的概念应当有以下认识:

    • 有些概念难是难在书写形式没有具体定义,这种搞懂就好了,要是老师书写也不规范,没必要纠结。比如赋值推论

    • 有些概念为了更加“数学”,所以不近人情,这种概念不可纠结。比如联结词

    • 有些概念就为了使要描述的其他定理和定义更加简洁,本身没有存在的必要。比如初等公式,其提出可能只是为了更好的描述重言式

    • 有些概念理解懂了基本含义不是结束,一定要理解概念提出是为了解决什么问题的,通俗的解释这个概念描述的现象,这才是正确方式。比如许多定理、某些等值演算。
    • 有些概念现在觉得画蛇添足,其实是为了后面的知识铺垫,所以不必纠结,有些概念理解不了,不如塌下心来做些题,在题中理解概念。
  4. 我们分析一个公式,应当有两方面的意识:

    • 语法:具体的有代换
    • 语义:具体的有赋值

三、书写规范

Read more »

一、命题与联结词

1.1 联结词的向量值函数理解

可以将联结词理解成一个n元函数,完成的是将 ${0,1}^n$ 到 ${0,1}$ 的映射,特别的,如果当n等于零的时候,可以预见,联结词函数退化成了一个常值函数,也就是 0 和 1 。所以 0 和 1 也被称为零元真值函数。

1.2 联结词的运算符理解

其实联结词还可以理解为运算符,比如合取就是变种的乘法,异或就是变种的加法,更往深里说,应该是运算符就是一种向量值函数。

Read more »

一、质能关系

当物体以一定速度运动时,其质量会增大(如果质量是一个常量的话,在恒力作用下很容易就超光速了)。有公式

物体对应的总能量,又称相对论能量,有如下公式,可以看出能量是质量的函数,质量是速度的函数,那么解题的时候应该一步步求解

物体的动能可以表示为

其他的动能表达式失效了。只能用这个算。

Read more »

一、直观理解

1.1 电磁场的理解

场是物质的,那么怎么才能把这种物质性显现出来呢?我认为我觉得它不明显是因为从小就接受电磁波的传导是不需要介质,以太是不存在的这两个概念。但是实际呢,只不过这种介质不是那种常见的比如空气啊啥的东西,但不意味着没有。在麦克斯韦的时代,他的理论就是建立在电磁以太上的基础上的。其实想一想,没有介质就有超距作用的嫌疑了,而且对于一个比较淳朴的人来说,认为作用是不需要通过介质传播的,就像可以不用手就触摸姑娘的脸颊一样不自然。

妨碍场理解的另一个因素是我们只要不涉及电磁波,那么很多现象还是可以直接认为两个物体相互作用,而场只是起辅助作用。总之,粒子和粒子关系占了主体地位,场占了次要地位。那么怎么挽救这个东西呢,一方面,可以认为场是感觉,有点类似罐中脑的感觉,我知道了一个粒子的受力情况,只能推测出此处的场的情况,而不能知道其他的电荷分布,这么看场才是唯一确定的。

还有一个方面,就是强化场的物质性,强化一个不那么物质的东西的物质性,最快速的办法是用比喻。而实际上也确实挺像的。以奔涌的大河为例,我不能说水是河,而应该说运动的水是河。但是还不够精确,运动的有沙子水是河,运动的泥水也是河,运动的眼泪也是河,所以说明一个东西是河,跟组成他的粒子没啥关系,而是跟运动的形式有关系,所以可以说运动的挺大的液体形式是河,但是运动的挺大的液体形式不是传统的意义上的物质,但是你还是可以说他已经很物质了,除了运动这个概念以外(在场里面大概是流速吧),还有很多东西都是这么个属性,比如不可压缩。有点算子的感觉。

Read more »

期中物理总结

一、数学知识

1.1 向量知识

1.2 积分知识

$In=\frac{n-1}{n}I{n-2}$ $I_1=1$ $I_0=\frac{\pi}{2}$

Read more »

MATLAB程序设计语言基础

一、变量与常量

1.1 常见数据类型

1.1.1 数值型数据

应当意识到,数值型数据概念的提出是与符号型数据想对应的,matlab一般存储数据为双浮点数,就势必造成存储和运算的误差,比如将 $\frac{1}{3}$ 存为 0.333333,更不要提 0 的模糊表示了。如果是整数的话,其实也会造成运算的误差,比如 5/2=2 的取整操作。所以准确的来说,运用数值型数据只能得到近似解,而不能得到解析解。而用符号型数据可以避免这个漏洞。

Read more »